Answer
{$\dfrac{-6 -2i \sqrt {5}}{4},\dfrac{-6 + 2i \sqrt {5}}{4}$}
Work Step by Step
Re-write the given equation as: $2x^2+6x+7=0$
Factorize the expression with the help of quadratic formula. Quadratic formula suggests that $x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}$
This implies that $x=\dfrac{-(6) \pm \sqrt{(6)^2-4(2)(7)}}{2(2)}$
or, $x=\dfrac{-6 \pm \sqrt {-20}}{4}$
or, $x=\dfrac{-6 \pm 2i \sqrt {5}}{4}$
or, $x=\dfrac{-6 -2i \sqrt {5}}{4},\dfrac{-6 + 2i \sqrt {5}}{4}$
Hence, our solution set is: {$\dfrac{-6 -2i \sqrt {5}}{4},\dfrac{-6 + 2i \sqrt {5}}{4}$}