Answer
$\dfrac{x\sqrt[3]{x}}{2y}$
Work Step by Step
RECALL:
The quotient rule:
$\sqrt[n]{\dfrac{a}{b}}=\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}$
where
$\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and $b\ne0$
Use the quotient rule above to obtain:
$=\dfrac{\sqrt[3]{x^4}}{\sqrt[3]{8y^{3}}}
\\=\dfrac{\sqrt[3]{x^3(x)}}{\sqrt[3]{(2y)^3}}
\\=\dfrac{x\sqrt[3]{x}}{2y}$