Answer
$5y\sqrt[3]{3x}$
Work Step by Step
Simplify each radical by factoring the radicand so that at least one factor is a perfect cube to obtain:
$=\sqrt[3]{8y^3(3x)} + y\sqrt[3]{27(3x)}
\\=\sqrt[3]{(2y)^3(3x)} + y\sqrt[3]{(3^3)(3x)}
\\=2y\sqrt[3]{3x} + y(3)\sqrt[3]{3x}
\\=2y\sqrt[3]{3x} + 3y\sqrt[3]{3x}$
RECALL:
The distributive property states that for any real numbers a, b, and c:
(1) $ac + bc = (a+b)c$
(2) $ac-bc=(a-b)c$
Use the rule (1) above to combine like terms and obtain:
$=(2y+3y)\sqrt[3]{3x}
\\=5y\sqrt[3]{3x}$