Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 428: 76

Answer

$ (f-g)(x)=\frac{x+1}{(x+3)(x-2)}$. $(-\infty,-3)\cup(-3,-2)\cup(-2,2)\cup(2,\infty)$.

Work Step by Step

The given functions are $f(x)=\frac{2x-1}{x^2+x-6}$ and $g(x)=\frac{x+2}{x^2+5x+6}$ Use $(f-g)(x)=f(x)-g(x)$. $\Rightarrow (f-g)(x)=\frac{2x-1}{x^2+x-6}-\frac{x+2}{x^2+5x+6}$. Factor the denominators of the fractions. $\Rightarrow x^2+x-6$ Rewrite the middle term $x$ as $3x-2x$. $\Rightarrow x^2+3x-2x-6$ Group the terms. $\Rightarrow (x^2+3x)+(-2x-6)$ Factor each group. $\Rightarrow x(x+3)-2(x+3)$ Factor out $(x+3)$. $\Rightarrow (x+3)(x-2)$ $\Rightarrow x^2+5x+6$ Rewrite the middle term $5x$ as $3x+2x$. $\Rightarrow x^2+3x+2x+6$ Group the terms. $\Rightarrow (x^2+3x)+(2x+6)$ Factor each group. $\Rightarrow x(x+3)+2(x+3)$ Factor out $(x+3)$. $\Rightarrow (x+3)(x+2)$ Back substitute the factor into the equation. $\Rightarrow (f-g)(x)=\frac{2x-1}{(x+3)(x-2)}-\frac{x+2}{(x+3)(x+2)}$. Cancel common terms. $\Rightarrow (f-g)(x)=\frac{2x-1}{(x+3)(x-2)}-\frac{1}{(x+3)}$. The LCD of both the fractions is $(x+3)(x-2)$. $\Rightarrow (f-g)(x)=\frac{2x-1}{(x+3)(x-2)}-\frac{(x-2)}{(x+3)(x-2)}$. Add both the numerators because denominators are the same. $\Rightarrow (f-g)(x)=\frac{2x-1-(x-2)}{(x+3)(x-2)}$. Simplify. $\Rightarrow (f-g)(x)=\frac{2x-1-x+2}{(x+3)(x-2)}$. Add like terms. $\Rightarrow (f-g)(x)=\frac{x+1}{(x+3)(x-2)}$. This gives: $(-\infty,-3)\cup(-3,-2)\cup(-2,2)\cup(2,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.