Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 428: 67

Answer

$\frac{x^2+5x+8}{(x+2)(x+1)}$.

Work Step by Step

The given expression is $=\left ( \frac{2x+3}{x+1}\cdot \frac{x^2+4x-5}{2x^2+x-3}\right )-\frac{2}{x+2}$ Factor all terms in the bracket $=x^2+4x-5$ Rewrite the middle term $4x$ as $5x-x$ $=x^2+5x-x-5$ Group terms. $=(x^2+5x)+(-x-5)$ Factor each term. $=x(x+5)-1(x+5)$ Factor out $(x+5)$. $=(x+5)(x-1)$ $=2x^2+x-3$ Rewrite the middle term $x$ as $3x-2x$ $=2x^2+3x-2x-3$ Group terms. $=(2x^2+3x)+(-2x-3)$ Factor each term. $=x(2x+3)-1(2x+3)$ Factor out $(2x+3)$. $=(2x+3)(x-1)$ Substitute all factors into the given expression. $=\left ( \frac{2x+3}{x+1}\cdot \frac{(x+5)(x-1)}{(2x+3)(x-1)}\right )-\frac{2}{x+2}$ Cancel common terms. $= \frac{x+5}{x+1}-\frac{2}{x+2}$ $=(x+2)(x+1)$. Multiply all fractions to make denominators equal. $= \frac{x+5}{x+1}\times \frac{(x+2)}{(x+2)}-\frac{2}{x+2}\times \frac{(x+1)}{(x+1)}$ Simplify. $= \frac{(x+5)(x+2)}{(x+2)(x+1)}-\frac{2(x+1)}{(x+2)(x+1)}$ $= \frac{(x+5)(x+2)-2(x+1)}{(x+2)(x+1)}$ $= \frac{x^2+5x+2x+10-2x-2}{(x+2)(x+1)}$ $= \frac{x^2+5x+8}{(x+2)(x+1)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.