Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 428: 72

Answer

$\frac{1}{(x-5)(x+3)} $.

Work Step by Step

The given expression is $\Rightarrow \left ( \frac{5}{x-5}-\frac{2}{x+3} \right) \div (3x+25)$ The LCD of the denominators in the bracket is $(x-5)(x+3)$. Multiply the numerator and denominator $\Rightarrow \left ( \frac{5(x+3)}{(x-5)(x+3)}-\frac{2(x-5)}{(x-5)(x+3)} \right) \div (3x+25)$ Add numerators in the bracket $\Rightarrow \left ( \frac{5(x+3)-2(x-5)}{(x-5)(x+3)} \right) \div (3x+25)$ Simplify. $\Rightarrow \left ( \frac{5x+15-2x+10}{(x-5)(x+3)} \right) \div (3x+25)$ $\Rightarrow \left ( \frac{3x+25}{(x-5)(x+3)} \right) \div (3x+25)$ Invert the divisor and multiply. $\Rightarrow \left ( \frac{3x+25}{(x-5)(x+3)} \right) \cdot \frac{1}{(3x+25)}$ Cancel common terms. $\Rightarrow \frac{1}{(x-5)(x+3)} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.