Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 428: 63

Answer

$\frac{16a^2-12ab-18b^2}{(3a+4b)(3a-4b)(2a-b)}$.

Work Step by Step

The given expression is $=\frac{6a+5b}{6a^2+5ab-4b^2}-\frac{a+2b}{9a^2-16b^2}$ First denominator $=6a^2+5ab-4b^2$. Rewrite the middle term $5ab$ as $8ab-3ab$ $=6a^2+8ab-3ab-4b^2$. Group terms. $=(6a^2+8ab)+(-3ab-4b^2)$. Factor each term. $=2a(3a+4b)-b(3a+4b)$. Factor out $(3a+4b)$. $=(3a+4b)(2a-b)$. Second denominator $=9a^2-16b^2$. Use the algebraic identity $a^2-b^2=(a+b)(a-b)$. $=(3a)^2-(4b)^2$ $=(3a+4b)(3a-4b)$ Substitute all factors into the given expression. $=\frac{6a+5b}{(3a+4b)(2a-b)}-\frac{a+2b}{(3a+4b)(3a-4b)}$ The LCM of all the denominators is $=(3a+4b)(3a-4b)(2a-b)$. Multiply all fractions to make denominators equal. $=\frac{6a+5b}{(3a+4b)(2a-b)}\times \frac{(3a-4b)}{(3a-4b)}-\frac{a+2b}{(3a+4b)(3a-4b)}\times \frac{(2a-b)}{(2a-b)}$ Simplify. $=\frac{(6a+5b)(3a-4b)}{(3a+4b)(3a-4b)(2a-b)}-\frac{(a+2b)(2a-b)}{(3a+4b)(3a-4b)(2a-b)}$ $=\frac{(6a+5b)(3a-4b)-(a+2b)(2a-b)}{(3a+4b)(3a-4b)(2a-b)}$ $=\frac{18a^2-24ab+15ab-20b^2-2a^2+ab-4ab+2b^2}{(3a+4b)(3a-4b)(2a-b)}$ Simplify. $=\frac{16a^2-12ab-18b^2}{(3a+4b)(3a-4b)(2a-b)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.