Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 428: 64

Answer

$\frac{2a^2+21ab-10b^2}{(a-b)(a+2b)(a+6b)}$.

Work Step by Step

Factor each term of the given expression. $\frac{5a-b}{a^2+ab-2b^2}-\frac{3a+2b}{a^2+5ab-6b^2}=\frac{5a-b}{(a+2b)(a-b)}-\frac{3a+2b}{(a+6b)(a-b)}$ LCD is $=(a-b)(a+2b)(a+6b)$. Multiply each numerator and denominator by the extra factor required to form the LCD. $=\frac{5a-b}{(a+2b)(a-b)}\times \frac{(a+6b)}{(a+6b)}-\frac{3a+2b}{(a+6b)(a-b)}\times \frac{(a+2b)}{(a+2b)}$ Simplify. $=\frac{(5a-b)(a+6b)}{(a-b)(a+2b)(a+6b)}-\frac{(3a+2b)(a+2b)}{(a-b)(a+2b)(a+6b)}$ Add both numerators. $=\frac{(5a-b)(a+6b)-(3a+2b)(a+2b)}{(a-b)(a+2b)(a+6b)}$ Use the distributive property. $=\frac{5a^2+30ab-ab-6b^2-3a^2-6ab-2ab-4b^2}{(a-b)(a+2b)(a+6b)}$ Simplify. $=\frac{2a^2+21ab-10b^2}{(a-b)(a+2b)(a+6b)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.