Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 428: 65

Answer

$\frac{m+6}{(m+2)(2m-1)(m-1)}$.

Work Step by Step

The given expression is $=\frac{1}{m^2+m-2}-\frac{3}{2m^2+3m-2}+\frac{2}{2m^2-3m+1}$ First denominator $=m^2+m-2$. Rewrite middle term $m$ as $2m-m$ $=m^2+2m-m-2$. Group terms. $=(m^2+2m)+(-m-2)$. Factor each term. $=m(m+2)-1(m+2)$. Factor out $(m+2)$. $=(m+2)(m-1)$. Second denominator $=2m^2+3m-2$. Rewrite middle term $3m$ as $4m-1m$ $=2m^2+4m-1m-2$. Group terms. $=(2m^2+4m)+(-1m-2)$. Factor each term. $=2m(m+2)-1(m+2)$. Factor out $(m+2)$. $=(m+2)(2m-1)$. Third denominator $=2m^2-3m+1$. Rewrite middle term $-3m$ as $-2m-1m$ $=2m^2-2m-1m+1$. Group terms. $=(2m^2-2m)+(-1m+1)$. Factor each term. $=2m(m-1)-1(m-1)$. Factor out $(m-1)$. $=(m-1)(2m-1)$. Substitute all factors into the given expression. $=\frac{1}{(m+2)(m-1)}-\frac{3}{(m+2)(2m-1)}+\frac{2}{(m-1)(2m-1)}$ The LCM of all the denominators is $=(m+2)(2m-1)(m-1)$. $=\frac{1}{(m+2)(m-1)}\times \frac{(2m-1)}{(2m-1)}-\frac{3}{(m+2)(2m-1)}\times \frac{(m-1)}{(m-1)}+\frac{2}{(m-1)(2m-1)}\times \frac{(m+2)}{(m+2)}$ $=\frac{(2m-1)}{(m+2)(2m-1)(m-1)}-\frac{3(m-1)}{(m+2)(2m-1)(m-1)}+\frac{2(m+2)}{(m+2)(2m-1)(m-1)}$ $=\frac{(2m-1)-3(m-1)+2(m+2)}{(m+2)(2m-1)(m-1)}$ $=\frac{2m-1-3m+3+2m+4}{(m+2)(2m-1)(m-1)}$ Simplify. $=\frac{m+6}{(m+2)(2m-1)(m-1)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.