Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 428: 68

Answer

$ \frac{1}{6} $.

Work Step by Step

The given expression is $\frac{1}{x^2-2x-8}\div\left( \frac{1}{x-4}-\frac{1}{x+2} \right)$ The LCM of the denominators in the bracket is =(x+2)(x-4). Multiply the fractions in the bracket to form the LCD in the denominator. $\frac{1}{x^2-2x-8}\div\left( \frac{(x+2)}{(x+2)(x-4)}-\frac{(x-4)}{(x+2)(x-4)} \right)$ Add numerators in the bracket. $\frac{1}{x^2-2x-8}\div\left( \frac{(x+2)-(x-4)}{(x+2)(x-4)} \right)$ Simplify the bracket. $\frac{1}{x^2-2x-8}\div\left( \frac{x+2-x+4}{(x+2)(x-4)} \right)$ $\frac{1}{x^2-2x-8}\div\left( \frac{6}{(x+2)(x-4)} \right)$ Invert the divisor and multiply. $\frac{1}{x^2-2x-8}\cdot\frac{(x+2)(x-4)}{6} $ Factor the denominator of the first fraction. $\Rightarrow x^2-2x-8$ Rewrite the middle term $-2x$ as $-4x+2x$ $\Rightarrow x^2-4x+2x-8$ Group the terms. $\Rightarrow (x^2-4x)+(2x-8)$ Factor each group. $\Rightarrow x(x-4)+2(x-4)$ Factor out $(x-4)$. $\Rightarrow (x-4)(x+2)$ Substitute the factor into the fraction. $\Rightarrow \frac{1}{(x-4)(x+2)}\cdot\frac{(x+2)(x-4)}{6} $ Cancel common terms. $\Rightarrow \frac{1}{6} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.