Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 428: 75

Answer

$(f-g)(x)=\frac{x+2}{x+3}$ $(-\infty,-5)\cup(-5,-3)\cup(-3,\infty)$.

Work Step by Step

The given functions are $f(x)=\frac{2x-3}{x+5}$ and $g(x)=\frac{x^2-4x-19}{x^2+8x+15}$ Use $(f-g)(x)=f(x)-g(x)$. $\Rightarrow (f-g)(x)=\frac{2x-3}{x+5}-\frac{x^2-4x-19}{x^2+8x+15}$. Factor the denominator of the second fraction. $\Rightarrow x^2+8x+15$ Rewrite the middle term $8x$ as $5x+3x$. $\Rightarrow x^2+5x+3x+15$ Group the terms. $\Rightarrow (x^2+5x)+(3x+15)$ Factor each group. $\Rightarrow x(x+5)+3(x+5)$ Factor out $(x+5)$. $\Rightarrow (x+5)(x+3)$ Back substitute the factor into the equation. $\Rightarrow (f-g)(x)=\frac{2x-3}{x+5}-\frac{x^2-4x-19}{(x+5)(x+3)}$. The LCD of both the fractions is $(x+5)(x+3)$. $\Rightarrow (f-g)(x)=\frac{(2x-3)(x+3)}{(x+5)(x+3)}-\frac{x^2-4x-19}{(x+5)(x+3)}$ $\Rightarrow (f-g)(x)=\frac{2x^2+6x-3x-9}{(x+5)(x+3)}-\frac{x^2-4x-19}{(x+5)(x+3)}$ $\Rightarrow (f-g)(x)=\frac{2x^2+6x-3x-9-(x^2-4x-19)}{(x+5)(x+3)}$ Simplify. $\Rightarrow (f-g)(x)=\frac{2x^2+6x-3x-9-x^2+4x+19}{(x+5)(x+3)}$ Add like terms. $\Rightarrow (f-g)(x)=\frac{x^2+7x+10}{(x+5)(x+3)}$ Factor the numerator. $\Rightarrow x^2+7x+10$ Rewrite the middle term $7x$ as $5x+2x$. $\Rightarrow x^2+5x+2x+10$ Group the terms. $\Rightarrow (x^2+5x)+(2x+10)$ Factor each group. $\Rightarrow x(x+5)+2(x+5)$ Factor out $(x+5)$. $\Rightarrow (x+5)(x+2)$ Back substitute the factor into the fraction. $\Rightarrow (f-g)(x)=\frac{(x+5)(x+2)}{(x+5)(x+3)}$ Cancel common terms. $\Rightarrow (f-g)(x)=\frac{x+2}{x+3}$ This gives: $(-\infty,-5)\cup(-5,-3)\cup(-3,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.