Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.4 - Matrix Solutions to Linear Systems - Exercise Set - Page 229: 40

Answer

$\Rightarrow \left\{\begin{matrix} \;w +2x -y =\;\;2 \\ \; \;\;x + y -2 z=-3 \\ \;\; \; \;\;\;\;\;\;\; y -z =-2\\ \; \;\;\;\;\;\;\;\;\;\;\;\;\; z=\;\; 3 \end{matrix}\right.$ $\Rightarrow \{(-1,2,1,3)\}$.

Work Step by Step

The given augmented matrix is $\Rightarrow \left[\begin{array}{cccc|c} 1 & 2 & -1&0& 2\\ 0&1&1&-2& -3 \\ 0 & 0& 1& -1&-2\\ 0&0&0&1&3 \end{array}\right]$ The above matrix is the reduced row-echelon form. Convert the matrix into system of equations as shown below. $\Rightarrow \left\{\begin{matrix} 1w +2x -1y +0z =\;2 \\ 0w +1x +1 y -2 z=\;-3 \\ 0w +0 x +1 y -1z =-2\\ 0 w +0 x +0 y +1 z=\; 3 \end{matrix}\right.$ or we can write. $\Rightarrow \left\{\begin{matrix} \;w +2x -y =\;\;2 \\ \; \;\;x + y -2 z=-3 \\ \;\; \; \;\;\;\;\;\;\; y -z =-2\\ \; \;\;\;\;\;\;\;\;\;\;\;\;\; z=\;\; 3 \end{matrix}\right.$ Substitute back the value of $z$ into third equation. $\Rightarrow y-(3)=-2$ Simplify. $\Rightarrow y-3=-2$ Solve for $y$. $\Rightarrow y=1$. Substitute back the value of $z$ and $y$ into the second equation. $\Rightarrow x + (1) -2 (3)=-3$ Simplify. $\Rightarrow x +1 - 6=-3$ Solve for $x$. $\Rightarrow x=2$. Substitute back the value of $z,y$ and $x$ into the first equation. $\Rightarrow w +2(2) -(1) =2$ Simplify. $\Rightarrow w +4 -1 =2$ Solve for $w$. $\Rightarrow w=-1$. The solution set is $\{(w,x,y,z)\}=\{(-1,2,1,3)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.