Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.4 - Matrix Solutions to Linear Systems - Exercise Set - Page 229: 28

Answer

$\{(-3,0,1)\}$.

Work Step by Step

The given system of equations is $3y-z=-1$ $x+5y-z=-4$ $-3x+6y+2z=11$ The augmented matrix is $\Rightarrow \left[\begin{array}{ccc|c} 0 & 3 & -1& -1\\ 1 &5 & -1& -4 \\ -3&6&2&11 \end{array}\right]$ Perform $R_1\leftrightarrow R_2$. Swap the 2nd and the 1st rows. $\Rightarrow \left[\begin{array}{ccc|c} 1 &5 & -1& -4 \\ 0 & 3 & -1& -1\\ -3&6&2&11 \end{array}\right]$ Perform $R_3\rightarrow R_3+3( R_1)$. $\Rightarrow \left[\begin{array}{ccc|c} 1 &5 & -1& -4 \\ 0 & 3 & -1& -1\\ -3+3(1)&6+3(5)&2+3(-1)&11+3(-4) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 &5 & -1& -4 \\ 0 & 3 & -1& -1\\ 0&21&-1&-1 \end{array}\right]$ Perform $R_2\Rightarrow R_2/(3)$ Change the sign of the second row and swap the 3rd and 2nd row. $\Rightarrow \left[\begin{array}{ccc|c} 1 &5 & -1& -4 \\ 0/(3) & 3/(3) & -1/(3)& -1/(3)\\ 0&21&-1&-1 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 &5 & -1& -4 \\ 0 & 1 & -1/3& -1/3\\ 0&21&-1&-1 \end{array}\right]$ Perform $R_1\rightarrow R_1-5 R_2$ and $R_3\rightarrow R_3-21 R_2$. $\Rightarrow \left[\begin{array}{ccc|c} 1-5(0) &5-5(1) & -1-5(-1/3)& -4-5(-1/3) \\ 0 & 1 & -1/3& -1/3\\ 0-21(0)&21-21(1)&-1-21(-1/3)&-1-21(-1/3) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 &0 & 2/3& -7/3 \\ 0 & 1 & -1/3& -1/3\\ 0&0&6&6 \end{array}\right]$ Perform $R_3\rightarrow \frac{R_3}{6}$. $\Rightarrow \left[\begin{array}{ccc|c} 1 &0 & 2/3& -7/3 \\ 0 & 1 & -1/3& -1/3\\ 0/(6)&0/(6)&6/(6)&6/(6) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 &0 & 2/3& -7/3 \\ 0 & 1 & -1/3& -1/3\\ 0&0&1&1 \end{array}\right]$ Perform $R_1\rightarrow R_1-(2/3)R_3$ and $R_2\rightarrow R_2+(1/3) R_3$. $\Rightarrow \left[\begin{array}{ccc|c} 1-(2/3)(0) &0-(2/3)(0) & 2/3-(2/3)(1)& -7/3-(2/3)(1) \\ 0+(1/3) (0) & 1+(1/3) (0) & -1/3+(1/3) (1)& -1/3+(1/3) (1)\\ 0&0&1&1 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 &0 & 0& -3 \\ 0 & 1 & & 0\\ 0&0&1&1 \end{array}\right]$ Use back substitution to solve the linear system. $\Rightarrow x=-3$. and $\Rightarrow y=0$. and $\Rightarrow z=1$. The solution set is $\{(x,y,z)\}=\{(-3,0,1)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.