Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.4 - Matrix Solutions to Linear Systems - Exercise Set - Page 229: 17

Answer

The answer is $ x=3 $ and $x=-3 $.

Work Step by Step

The given system of linear equations is $2x+y=3 $ $x-3y=12 $ The augmented matrix is $\left[\begin{array}{cc|c} 2& 1 &3 \\ 1&-3 &12 \\ \end{array}\right]$ Perform $R_2\rightarrow R_2-\frac{1}{2}\cdot R_1$. Multiply row one by $-\frac{1}{2}$ and subtract from row two. $\left[\begin{array}{cc|c} 2& 1 &3 \\ 1-\frac{1}{2}\cdot 2&-3-\frac{1}{2}\cdot1 &12-\frac{1}{2}\cdot3 \\ \end{array}\right]$ Simplify. $\left[\begin{array}{cc|c} 2& 1 &3 \\ 1-1&-3-\frac{1}{2} &12-\frac{3}{2} \\ \end{array}\right]$ $\left[\begin{array}{cc|c} 2& 1 &3 \\ 0&\frac{-6-1}{2} &\frac{24-3}{2} \\ \end{array}\right]$ $\left[\begin{array}{cc|c} 2& 1 &3 \\ 0&\frac{-7}{2} &\frac{21}{2} \\ \end{array}\right]$ Perform $R_2\rightarrow \frac{2}{-7}\cdot R_2$. Multiply row two by $\frac{2}{-7}$. $\left[\begin{array}{cc|c} 2& 1 &3 \\ \frac{2}{-7} \cdot 0&\frac{2}{-7}\cdot \frac{-7}{2} &\frac{2}{-7}\cdot \frac{21}{2} \\ \end{array}\right]$ Simplify. $\left[\begin{array}{cc|c} 2& 1 &3 \\ 0&1 &-3 \\ \end{array}\right]$ Perform Perform $R_1 \rightarrow R_1- R_2$. Subtract row two from row one. $\left[\begin{array}{cc|c} 2-0& 1-1 &3+3 \\ 0&1 &-3 \\ \end{array}\right]$ Simplify. $\left[\begin{array}{cc|c} 2& 0 &6 \\ 0&1 &-3 \\ \end{array}\right]$ Use back substitution to solve the linear system. $ 2x=6 $ $x=3 $ and $y=-3 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.