Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.4 - Matrix Solutions to Linear Systems - Exercise Set - Page 229: 19

Answer

$\{(2,-5)\}$.

Work Step by Step

The given system of equations is $5x+7y=-25$ $11x+6y=-8$ The augmented matrix is $\Rightarrow \left[\begin{array}{cc|c} 5 & 7 & -25\\ 11 & 6 & -8 \end{array}\right]$ Perform $R_1\rightarrow \frac{R_1}{5}$. $\Rightarrow \left[\begin{array}{cc|c} 5/5 & 7/5 & -25/5\\ 11 & 6 & -8 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{cc|c} 1 & 7/5 & -5\\ 11 & 6 & -8 \end{array}\right]$ Perform $R_2\rightarrow R_2-11\times R_1$. $\Rightarrow \left[\begin{array}{cc|c} 1 & 7/5 & -5\\ 11-11\times 1 & 6-11\times (7/5) & -8-11\times (-5) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{cc|c} 1 & 7/5 & -5\\ 0 & -47/5 & 47 \end{array}\right]$ Perform $R_2\rightarrow -\frac{5}{47}\times R_2$. $\Rightarrow \left[\begin{array}{cc|c} 1 & 7/5 & -5\\ -\frac{5}{47}\times 0 & -\frac{5}{47}\times(-47/5) &-\frac{5}{47}\times 47 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{cc|c} 1 & 7/5 & -5\\ 0 & 1 &-5 \end{array}\right]$ Perform $R_1\rightarrow R_1-(7/5)\times R_2$. $\Rightarrow \left[\begin{array}{cc|c} 1-(7/5)\times 0 & 7/5-(7/5)\times1 & -5-(7/5)\times (-5)\\ 0 & 1 &-5 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{cc|c} 1 & 0 & 2\\ 0 & 1 &-5 \end{array}\right]$ Use back substitution to solve the linear system. $\Rightarrow x=2$ and $\Rightarrow y=-5$. The solution set is $\{(x,y)\}=\{(2,-5)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.