Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.4 - Matrix Solutions to Linear Systems - Exercise Set - Page 229: 20

Answer

$\{(4,-2)\}$.

Work Step by Step

The given system of equations is $3x-5y=22$ $4x-2y=20$ The augmented matrix is $\Rightarrow \left[\begin{array}{cc|c} 3 & -5 & 22\\ 4 & -2 & 20 \end{array}\right]$ Perform $R_1\rightarrow \frac{R_1}{3}$. $\Rightarrow \left[\begin{array}{cc|c} 3/3 & -5/3 & 22/3\\ 4 & -2 & 20 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{cc|c} 1 & -5/3 & 22/3\\ 4 & -2 & 20 \end{array}\right]$ Perform $R_2\rightarrow R_2-4\times R_1$. $\Rightarrow \left[\begin{array}{cc|c} 1 & -5/3 & 22/3\\ 4-4\times 1 & -2-4\times (-5/3) & 20-4\times (22/3) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{cc|c} 1 & -5/3 & 22/3\\ 0 & 14/3 & -28/3 \end{array}\right]$ Perform $R_2\rightarrow \frac{3}{14}\times R_2$. $\Rightarrow \left[\begin{array}{cc|c} 1 & -5/3 & 22/3\\ (3/14)0 & (3/14)(14/3) & (3/14)(-28/3) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{cc|c} 1 & -5/3 & 22/3\\ 0 & 1 & -2 \end{array}\right]$ Perform $R_1\rightarrow R_1+(5/3)\times R_2$. $\Rightarrow \left[\begin{array}{cc|c} 1+(5/3)\times 0 & -5/3+(5/3)\times1 & (22/3)+(5/3)\times (-2)\\ 0 & 1 &-2 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{cc|c} 1 & 0 & 4\\ 0 & 1 &-2 \end{array}\right]$ Use back substitution to solve the linear system. $\Rightarrow x=4$ and $\Rightarrow y=-2$. The solution set is $\{(x,y)\}=\{(4,-2)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.