Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.4 - Matrix Solutions to Linear Systems - Exercise Set - Page 229: 31

Answer

$\{(1,2,3)\}$.

Work Step by Step

The given system of equations is $x+y+z=6$ $x-z=-2$ $y+3z=11$ The augmented matrix is $\Rightarrow \left[\begin{array}{ccc|c} 1 & 1 & 1& 6\\ 1 &0 & -1& -2 \\ 0&1&3&11 \end{array}\right]$ Perform $R_2\rightarrow R_2- R_1$. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 1 & 1& 6\\ 1-1 &0-1 & -1-1& -2-6 \\ 0&1&3&11 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 1 & 1& 6\\ 0 &-1 & -2& -8 \\ 0&1&3&11 \end{array}\right]$ Perform $R_2\Rightarrow R_2/(-1)$ $\Rightarrow \left[\begin{array}{ccc|c} 1 & 1 & 1& 6\\ 0/(-1) &-1/(-1) & -2/(-1)& -8/(-1) \\ 0&1&3&11 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 1 & 1& 6\\ 0 &1 & 2& 8 \\ 0&1&3&11 \end{array}\right]$ Perform $R_1\rightarrow R_1- R_2$ and $R_3\rightarrow R_3- R_2$. $\Rightarrow \left[\begin{array}{ccc|c} 1-0 & 1-1 & 1-2& 6-8\\ 0 &1 & 2& 8 \\ 0-0&1-1&3-2&11-8 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & -1& -2\\ 0 &1 & 2& 8 \\ 0&0&1&3 \end{array}\right]$ Perform $R_1\rightarrow R_1+R_3$ and $R_2\rightarrow R_2-2 R_3$. $\Rightarrow \left[\begin{array}{ccc|c} 1+0 & 0+0 & -1+1& -2+3\\ 0-2(0) &1-2(0) & 2-2(1)& 8-2(3) \\ 0&0&1&3 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 0& 1\\ 0 &1 & 0& 2 \\ 0&0&1&3 \end{array}\right]$ Use back substitution to solve the linear system. $\Rightarrow x=1$. and $\Rightarrow y=2$. and $\Rightarrow z=3$. The solution set is $\{(x,y,z)\}=\{(1,2,3)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.