Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.4 - Matrix Solutions to Linear Systems - Exercise Set - Page 229: 26

Answer

$\{(1,-1,1)\}$.

Work Step by Step

The given system of equations is $x-2y-z=2$ $2x-y+z=4$ $-x+y-2z=-4$ The augmented matrix is $\Rightarrow \left[\begin{array}{ccc|c} 1 & -2 & -1& 2\\ 2 & -1 & 1& 4 \\ -1&1&-2&-4 \end{array}\right]$ Perform $R_2\rightarrow R_2-2\times R_1$ and $R_3\rightarrow R_3+ R_1$. $\Rightarrow \left[\begin{array}{ccc|c} 1 & -2 & -1& 2\\ 2-2\times (1) & -1-2\times (-2) & 1-2\times (-1)& 4-2\times (2) \\ -1+1&1-2&-2-1&-4+2 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & -2 & -1& 2\\ 0 & 3 & 3& 0 \\ 0&-1&-3&-2 \end{array}\right]$ Perform $R_2\leftrightarrow R_3$ Change the sign of the second row and swap the 3rd and 2nd row. $\Rightarrow \left[\begin{array}{ccc|c} 1 & -2 & -1& 2\\ 0&1&3&2 \\ 0 & 3 & 3& 0 \end{array}\right]$ Perform $R_1\rightarrow R_1+2\times R_2$ and $R_3\rightarrow R_3-3 R_2$. $\Rightarrow \left[\begin{array}{ccc|c} 1+2\times (0) & -2+2\times (1) & -1+2\times (3)& 2+2\times (2)\\ 0&1&3&2 \\ 0 -3\times (0)& 3-3\times (1) & 3-3\times (3)& 0-3\times (2) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 5& 6\\ 0&1&3&2 \\ 0 & 0 & -6& -6 \end{array}\right]$ Perform $R_3\rightarrow \frac{R_3}{-6}$. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 5& 6\\ 0&1&3&2 \\ 0/(-6) & 0 /(-6)& -6/(-6)& -6/(-6) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 5& 6\\ 0&1&3&2 \\ 0 & 0& 1& 1 \end{array}\right]$ Perform $R_1\rightarrow R_1-5\times R_3$ and $R_2\rightarrow R_2-3 R_3$. $\Rightarrow \left[\begin{array}{ccc|c} 1-5(0) & 0-5(0) & 5-5(1)& 6-5(1)\\ 0-3(0)&1-3(0)&3-3(1)&2-3(1) \\ 0 & 0& 1& 1 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 0& 1\\ 0&1&0&-1 \\ 0 & 0& 1& 1 \end{array}\right]$ Use back substitution to solve the linear system. $\Rightarrow x=1$ and $\Rightarrow y=-1$. and $\Rightarrow z=1$. The solution set is $\{(x,y,z)\}=\{(1,-1,1)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.