Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.4 - Matrix Solutions to Linear Systems - Exercise Set - Page 229: 38

Answer

$\{(3,0,-4)\}$.

Work Step by Step

The given system of equations is $x+3y=3$ $y+2z=-8$ $x-z=7$ The augmented matrix is $\Rightarrow \left[\begin{array}{ccc|c} 1 & 3 & 0& 3\\ 0 & 1 & 2& -8 \\ 1&0&-1&7 \end{array}\right]$ Perform $R_3\rightarrow R_3- R_1$. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 3 & 0& 3\\ 0 & 1 & 2& -8 \\ 1-1&0-3&-1-0&7-3 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 3 & 0& 3\\ 0 & 1 & 2& -8 \\ 0&-3&-1&4 \end{array}\right]$ Perform $R_1\rightarrow R_1- 3R_2$ and $R_3\rightarrow R_3+3 R_2$. $\Rightarrow \left[\begin{array}{ccc|c} 1 -3(0)& 3 -3(1) & 0 -3(2)& 3 -3(-8)\\ 0 & 1 & 2& -8 \\ 0 +3(0)&-3+3(1)&-1+3(2)&4+3(-8) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & -6& 27\\ 0 & 1 & 2& -8 \\ 0 &0&5&-20 \end{array}\right]$ Perform $R_3\rightarrow \frac{R_3}{5}$. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & -6& 27\\ 0 & 1 & 2& -8 \\ 0/(5) &0/(5) &5/(5) &-20/(5) \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & -6& 27\\ 0 & 1 & 2& -8 \\ 0 &0 &1 &-4 \end{array}\right]$ Perform $R_1\rightarrow R_1+6 R_3$ and $R_2\rightarrow R_2-2 R_3$. $\Rightarrow \left[\begin{array}{ccc|c} 1+6(0) & 0+6(0) & -6+6(1) & 27+6(-4) \\ 0-2(0) & 1-2(0) & 2-2(1)& -8-2(-4) \\ 0 &0 &1 &-4 \end{array}\right]$ Simplify. $\Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 0 &3 \\ 0 & 1 & 0& 0 \\ 0 &0 &1 &-4 \end{array}\right]$ Use back substitution to solve the linear system. $\Rightarrow x=3$ and $\Rightarrow y=0$. and $\Rightarrow z=-4$. The solution set is $\{(x,y,z)\}=\{(3,0,-4)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.