Answer
The graph is shown below
Work Step by Step
$\frac{{{x}^{2}}}{4}-\frac{{{y}^{2}}}{25}=1$
Identify a and b by comparing $\frac{{{x}^{2}}}{{{3}^{2}}}-\frac{{{y}^{2}}}{{{3}^{2}}}=1$ with the standard equation of a hyperbola $\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1$.
Here,
$a=2$ and $b=5$
The asymptotes are,
$\begin{align}
& y=\frac{b}{a}x \\
& =\frac{5}{2}x
\end{align}$
And,
$\begin{align}
& y=-\frac{b}{a}x \\
& =-\frac{5}{2}x
\end{align}$
For $a=2$ and $b=5$, the possible pairs are as shown below:
$\left( -2,5 \right),\left( 2,5 \right),\left( 2,-5 \right),\left( -2,-5 \right)$
These pairs form a rectangle, and both asymptotes pass through the corner points of the rectangle.
The required table to plot both asymptotes is shown below,
$\begin{matrix}
x & y=\frac{5}{2}x & y=-\frac{5}{2}x \\
-2 & -5 & 5 \\
0 & 0 & 0 \\
2 & 5 & -5 \\
\end{matrix}$
The vertices of the horizontal hyperbola are the mid-points of the left and right sides of the rectangle; thus, the vertices of the horizontal hyperbola are $\left( -2,0 \right)$ and $\left( 2,0 \right)$.
Consider the hyperbola equation,
$\frac{{{x}^{2}}}{4}-\frac{{{y}^{2}}}{25}=1$
Rewrite the equation as shown below,
$\begin{align}
& \frac{{{x}^{2}}}{4}-\frac{{{y}^{2}}}{25}=1 \\
& \frac{{{y}^{2}}}{25}=\frac{{{x}^{2}}}{4}-1 \\
& \frac{{{y}^{2}}}{4}=\frac{{{x}^{2}}-4}{4} \\
& y=\pm \frac{5}{2}\sqrt{{{x}^{2}}-4}
\end{align}$
Substitute $x=-5$ into the equation $y=\pm \frac{5}{2}\sqrt{{{x}^{2}}-4}$,
$\begin{align}
& y=\pm \frac{5}{2}\sqrt{{{\left( -5 \right)}^{2}}-4} \\
& =\pm \frac{5}{2}\sqrt{25-4} \\
& =\pm \frac{5}{2}\left( 4.58 \right) \\
& =\pm 11.46
\end{align}$
Substitute $x=-2$ into the equation $y=\pm \frac{5}{2}\sqrt{{{x}^{2}}-4}$,
$\begin{align}
& y=\pm \frac{5}{2}\sqrt{{{\left( -2 \right)}^{2}}-4} \\
& =\pm \frac{5}{2}\sqrt{4-4} \\
& =\pm \frac{5}{2}\left( 0 \right) \\
& =0
\end{align}$
Substitute $x=2$ into the equation $y=\pm \frac{5}{2}\sqrt{{{x}^{2}}-4}$,
$\begin{align}
& y=\pm \frac{5}{2}\sqrt{{{\left( 2 \right)}^{2}}-4} \\
& =\pm \frac{5}{2}\sqrt{4-4} \\
& =\pm \frac{5}{2}\left( 0 \right) \\
& =0
\end{align}$
Substitute $x=5$ into the equation $y=\pm \frac{5}{2}\sqrt{{{x}^{2}}-4}$,
$\begin{align}
& y=\pm \frac{5}{2}\sqrt{{{\left( 5 \right)}^{2}}-4} \\
& =\pm \frac{5}{2}\sqrt{25-4} \\
& =\pm \frac{5}{2}\left( 4.58 \right) \\
& =\pm 11.46
\end{align}$
$\begin{matrix}
x & y=\pm \frac{5}{2}\sqrt{{{x}^{2}}-4} \\
-5 & \pm 11.46 \\
-2 & 0 \\
2 & 0 \\
5 & \pm 11.46 \\
\end{matrix}$
Now plot the graph of the hyperbola as shown in Figure - 2.