Answer
The graph is shown below.
Work Step by Step
$\frac{{{y}^{2}}}{36}-\frac{{{x}^{2}}}{9}=1$
Identify a and b by comparing $\frac{{{x}^{2}}}{{{3}^{2}}}-\frac{{{y}^{2}}}{{{3}^{2}}}=1$ with the standard equation of a hyperbola $\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1$.
Here,
$a=3$ and $b=6$
The asymptotes are,
$\begin{align}
& y=\frac{b}{a}x \\
& =\frac{6}{3}x \\
& =2x
\end{align}$
And,
$\begin{align}
& y=-\frac{b}{a}x \\
& =-\frac{6}{3}x \\
& =-2x
\end{align}$
For $a=3$ and $b=6$, the possible pairs are as shown below,
$\left( -3,6 \right),\left( 3,6 \right),\left( 3,-6 \right),\left( -3,-6 \right)$
These pairs form a rectangle, and both asymptotes pass through the corner points of the rectangle.
The required table to plot both asymptotes is shown below,
$\begin{matrix}
x & y=2x & y=-2x \\
-3 & -6 & 6 \\
0 & 0 & 0 \\
3 & 6 & -6 \\
\end{matrix}$
The vertices of the vertical hyperbola are the mid-points of the top and bottom sides of the rectangle; thus, the vertices of the vertical hyperbola are $\left( 0,-6 \right)$ and $\left( 0,6 \right)$.
Consider the hyperbola equation,
$\frac{{{y}^{2}}}{36}-\frac{{{x}^{2}}}{9}=1$
Rewrite the equation as shown below,
$\begin{align}
& \frac{{{y}^{2}}}{36}-\frac{{{x}^{2}}}{9}=1 \\
& \frac{{{y}^{2}}}{36}=1+\frac{{{x}^{2}}}{9} \\
& \frac{{{y}^{2}}}{36}=\frac{9+{{x}^{2}}}{9} \\
& y=\pm 2\sqrt{9+{{x}^{2}}}
\end{align}$
Substitute $x=-5$ into the equation $y=\pm 2\sqrt{9+{{x}^{2}}}$,
$\begin{align}
& y=\pm 2\sqrt{9+{{\left( -5 \right)}^{2}}} \\
& =\pm 2\sqrt{9+25} \\
& =\pm 2\left( 5.83 \right) \\
& =\pm 11.66
\end{align}$
Substitute $x=0$ into the equation $y=\pm 2\sqrt{9+{{x}^{2}}}$,
$\begin{align}
& y=\pm 2\sqrt{9+{{\left( 0 \right)}^{2}}} \\
& =\pm 2\sqrt{9} \\
& =\pm 2\left( 3 \right) \\
& =\pm 6
\end{align}$
Substitute $x=5$ into the equation,
$\begin{align}
& y=\pm 2\sqrt{9+{{\left( 5 \right)}^{2}}} \\
& =\pm 2\sqrt{9+25} \\
& =\pm 2\left( 5.83 \right) \\
& =\pm 11.66
\end{align}$
$\begin{matrix}
x & y=\pm \frac{4}{3}\sqrt{9+{{x}^{2}}} \\
-5 & \pm 11.66 \\
0 & \pm 6 \\
5 & \pm 11.66 \\
\end{matrix}$
Now plot the graph of the hyperbola as shown below. The vertices of the vertical hyperbola are the mid-points of the top and bottom sides of the rectangle; thus, the vertices of the vertical hyperbola are $\left( 0,-6 \right)$ and $\left( 0,6 \right)$.
Consider the hyperbola equation,
$\frac{{{y}^{2}}}{36}-\frac{{{x}^{2}}}{9}=1$
Rewrite the equation as shown below,
$\begin{align}
& \frac{{{y}^{2}}}{36}-\frac{{{x}^{2}}}{9}=1 \\
& \frac{{{y}^{2}}}{36}=1+\frac{{{x}^{2}}}{9} \\
& \frac{{{y}^{2}}}{36}=\frac{9+{{x}^{2}}}{9} \\
& y=\pm 2\sqrt{9+{{x}^{2}}}
\end{align}$
Substitute $x=-5$ into the equation $y=\pm 2\sqrt{9+{{x}^{2}}}$,
$\begin{align}
& y=\pm 2\sqrt{9+{{\left( -5 \right)}^{2}}} \\
& =\pm 2\sqrt{9+25} \\
& =\pm 2\left( 5.83 \right) \\
& =\pm 11.66
\end{align}$
Substitute $x=0$ into the equation $y=\pm 2\sqrt{9+{{x}^{2}}}$,
$\begin{align}
& y=\pm 2\sqrt{9+{{\left( 0 \right)}^{2}}} \\
& =\pm 2\sqrt{9} \\
& =\pm 2\left( 3 \right) \\
& =\pm 6
\end{align}$
Substitute $x=5$ into the equation,
$\begin{align}
& y=\pm 2\sqrt{9+{{\left( 5 \right)}^{2}}} \\
& =\pm 2\sqrt{9+25} \\
& =\pm 2\left( 5.83 \right) \\
& =\pm 11.66
\end{align}$
The required table is:
$\begin{matrix}
x & y=\pm \frac{4}{3}\sqrt{9+{{x}^{2}}} \\
-5 & \pm 11.66 \\
0 & \pm 6 \\
5 & \pm 11.66 \\
\end{matrix}$
Consider the hyperbola equation,
$\frac{{{y}^{2}}}{36}-\frac{{{x}^{2}}}{9}=1$
Rewrite the equation as shown below,
$\begin{align}
& \frac{{{y}^{2}}}{36}-\frac{{{x}^{2}}}{9}=1 \\
& \frac{{{y}^{2}}}{36}=1+\frac{{{x}^{2}}}{9} \\
& \frac{{{y}^{2}}}{36}=\frac{9+{{x}^{2}}}{9} \\
& y=\pm 2\sqrt{9+{{x}^{2}}}
\end{align}$
Substitute $x=-5$ into the equation $y=\pm 2\sqrt{9+{{x}^{2}}}$,
$\begin{align}
& y=\pm 2\sqrt{9+{{\left( -5 \right)}^{2}}} \\
& =\pm 2\sqrt{9+25} \\
& =\pm 2\left( 5.83 \right) \\
& =\pm 11.66
\end{align}$
Substitute $x=0$ into the equation $y=\pm 2\sqrt{9+{{x}^{2}}}$,
$\begin{align}
& y=\pm 2\sqrt{9+{{\left( 0 \right)}^{2}}} \\
& =\pm 2\sqrt{9} \\
& =\pm 2\left( 3 \right) \\
& =\pm 6
\end{align}$
Substitute $x=5$ into the equation,
$\begin{align}
& y=\pm 2\sqrt{9+{{\left( 5 \right)}^{2}}} \\
& =\pm 2\sqrt{9+25} \\
& =\pm 2\left( 5.83 \right) \\
& =\pm 11.66
\end{align}$
The required table is:
$\begin{matrix}
x & y=\pm \frac{4}{3}\sqrt{9+{{x}^{2}}} \\
-5 & \pm 11.66 \\
0 & \pm 6 \\
5 & \pm 11.66 \\
\end{matrix}$
Now plot the graph.