Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 13 - Conic Sections - 13.3 Conic Sections: Hyperbolas - 13.3 Exercise Set - Page 871: 10

Answer

The graph is shown below.

Work Step by Step

Consider the equation: $\frac{{{y}^{2}}}{16}-\frac{{{x}^{2}}}{9}=1$ Identify a and b by comparing $\frac{{{x}^{2}}}{{{3}^{2}}}-\frac{{{y}^{2}}}{{{3}^{2}}}=1$ with the standard equation of a hyperbola $\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1$. Here, $a=3$ and $b=4$ The asymptotes are, $\begin{align} & y=\frac{b}{a}x \\ & =\frac{4}{3}x \end{align}$ And, $\begin{align} & y=\frac{b}{a}x \\ & =-\frac{4}{3}x \end{align}$ For $a=3$ and $b=4$, the possible pairs are as shown below, $\left( -3,4 \right),\left( 3,4 \right),\left( 3,-4 \right),\left( -3,-4 \right)$ These pairs form a rectangle and both asymptotes pass through the corner points of the rectangle. The required table to plot both asymptotes is shown below, $\begin{matrix} x & y=\frac{4}{3}x & y=-\frac{4}{3}x \\ -3 & -4 & 4 \\ 0 & 0 & 0 \\ 3 & 4 & -4 \\ \end{matrix}$ The vertices of the vertical hyperbola are the mid-points of the top and bottom sides of the rectangle; thus, the vertices of the vertical hyperbola are $\left( 0,-4 \right)$ and $\left( 0,4 \right)$. Consider the hyperbola equation, $\frac{{{y}^{2}}}{16}-\frac{{{x}^{2}}}{9}=1$ Rewrite the equation as shown below, $\begin{align} & \frac{{{y}^{2}}}{16}-\frac{{{x}^{2}}}{9}=1 \\ & \frac{{{y}^{2}}}{16}=1+\frac{{{x}^{2}}}{9} \\ & \frac{{{y}^{2}}}{16}=\frac{9+{{x}^{2}}}{9} \\ & y=\pm \frac{4}{3}\sqrt{9+{{x}^{2}}} \end{align}$ Substitute $x=-2$ into the equation, $\begin{align} & y=\pm \frac{4}{3}\sqrt{9+{{\left( -2 \right)}^{2}}} \\ & =\pm \frac{4}{3}\sqrt{9+4} \\ & =\pm \frac{4}{3}\left( 3.6 \right) \\ & =\pm 4.807 \end{align}$ Substitute $x=0$ into the equation, $\begin{align} & y=\pm \frac{4}{3}\sqrt{9+{{\left( 0 \right)}^{2}}} \\ & =\pm \frac{4}{3}\sqrt{9} \\ & =\pm \frac{4}{3}\left( 3 \right) \\ & =\pm 4 \end{align}$ Substitute $x=2$ into the equation, $\begin{align} & y=\pm \frac{4}{3}\sqrt{9+{{\left( 2 \right)}^{2}}} \\ & =\pm \frac{4}{3}\sqrt{9+4} \\ & =\pm \frac{4}{3}\left( 3.6 \right) \\ & =\pm 4.807 \end{align}$ $\begin{matrix} x & y=\pm \frac{4}{3}\sqrt{9+{{x}^{2}}} \\ -2 & \pm 4.807 \\ 0 & \pm 4 \\ 2 & \pm 4.807 \\ \end{matrix}$ Now plot the graph of the hyperbola as shown in Figure - 2.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.