Answer
The graph is shown below
Work Step by Step
$\frac{{{x}^{2}}}{9}-\frac{{{y}^{2}}}{9}=1$
Identify a and b by comparing $\frac{{{x}^{2}}}{{{3}^{2}}}-\frac{{{y}^{2}}}{{{3}^{2}}}=1$ with the standard equation of a hyperbola $\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1$.
Here,
$a=3$ and $b=3$
The asymptotes are,
$\begin{align}
& y=\frac{b}{a}x \\
& =\frac{3}{3}x \\
& =x
\end{align}$
And,
$\begin{align}
& y=-\frac{b}{a}x \\
& =-\frac{3}{3}x \\
& =-x
\end{align}$
For $a=3$ and $b=3$, the possible pairs are as shown below,
$\left( -3,3 \right),\left( 3,3 \right),\left( 3,-3 \right),\left( -3,-3 \right)$
These pairs form a square, and both asymptotes pass through the corner points of the square.
The required table to plot both asymptotes is shown below,
$\begin{matrix}
x & y=x & y=-x \\
-3 & -3 & 3 \\
0 & 0 & 0 \\
3 & 3 & -3 \\
\end{matrix}$
The vertices of the horizontal hyperbola are the mid-points of the right and left sides of the square; thus, the vertices of a horizontal hyperbola are $\left( -3,0 \right)$ and $\left( 3,0 \right)$.
Consider the hyperbola equation,
$\frac{{{x}^{2}}}{9}-\frac{{{y}^{2}}}{9}=1$
Rewrite the equation as shown below,
$\begin{align}
& \frac{{{x}^{2}}}{9}-\frac{{{y}^{2}}}{9}=1 \\
& \frac{{{y}^{2}}}{9}=\frac{{{x}^{2}}}{9}-1 \\
& \frac{{{y}^{2}}}{9}=\frac{{{x}^{2}}-9}{9} \\
& y=\pm \sqrt{{{x}^{2}}-9}
\end{align}$
Substitute $x=-4$ into the equation $y=\pm \sqrt{{{x}^{2}}-9}$,
$\begin{align}
& y=\pm \sqrt{{{\left( -4 \right)}^{2}}-9} \\
& =\pm \sqrt{16-9} \\
& =\pm \sqrt{7} \\
& =\pm 2.646
\end{align}$
Substitute $x=-3$ into the equation $y=\pm \sqrt{{{x}^{2}}-9}$,
$\begin{align}
& y=\pm \sqrt{{{\left( -3 \right)}^{2}}-9} \\
& =\pm \sqrt{9-9} \\
& =\pm \sqrt{0} \\
& =\pm 0
\end{align}$
Substitute $x=3$ into the equation $y=\pm \sqrt{{{x}^{2}}-9}$,
$\begin{align}
& y=\pm \sqrt{{{\left( 3 \right)}^{2}}-9} \\
& =\pm \sqrt{9-9} \\
& =\pm \sqrt{0} \\
& =\pm 0
\end{align}$
Substitute $x=4$ into the equation $y=\pm \sqrt{{{x}^{2}}-9}$,
$\begin{align}
& y=\pm \sqrt{{{\left( 4 \right)}^{2}}-9} \\
& =\pm \sqrt{16-9} \\
& =\pm \sqrt{7} \\
& =\pm 2.646
\end{align}$
$\begin{matrix}
x & y=\pm \sqrt{{{x}^{2}}-9} \\
-4 & \pm 2.646 \\
-3 & 0 \\
3 & 0 \\
4 & \pm 2.646 \\
\end{matrix}$
Now, plot the graph of the hyperbola as shown in figure 2.