Answer
The graph is shown below
Work Step by Step
$\frac{{{y}^{2}}}{16}-\frac{{{x}^{2}}}{16}=1$
Identify a and b by comparing $\frac{{{y}^{2}}}{{{4}^{2}}}-\frac{{{x}^{2}}}{{{4}^{2}}}=1$ with standard equation of hyperbola $\frac{{{y}^{2}}}{{{b}^{2}}}-\frac{{{x}^{2}}}{{{a}^{2}}}=1$ which has vertical axes.
Here,
$a=4$ and $b=4$
The asymptotes are,
$\begin{align}
& y=\frac{b}{a}x \\
& =\frac{4}{4}x \\
& =x
\end{align}$
And,
$\begin{align}
& y=-\frac{b}{a}x \\
& =-\frac{4}{4}x \\
& =-x
\end{align}$
When, $a=4$ and $b=4$ then, the possible pairs are as shown below,
$\left( -4,4 \right),\left( 4,4 \right),\left( 4,-4 \right),\left( -4,-4 \right)$
These pairs form a square and both asymptotes pass through the corner points of the square.
The required table to plot both asymptotes is shown below,
$\begin{matrix}
x & y=\frac{3}{4}x & y=-\frac{3}{4}x \\
-4 & -3 & 3 \\
0 & 0 & 0 \\
1 & \frac{3}{4} & -\frac{3}{4} \\
4 & 3 & -3 \\
\end{matrix}$
Plot both the asymptotes and square as shown In figure 1
The vertices of the vertical hyperbola are the mid-points of the top and bottom sides of the rectangle thus, the vertices of the vertical hyperbola are $\left( 0,-4 \right)$ and $\left( 0,4 \right)$.
Consider the hyperbola equation,
$\frac{{{y}^{2}}}{16}-\frac{{{x}^{2}}}{16}=1$
Rewrite the equation as shown below,
$\begin{align}
& \frac{{{y}^{2}}}{16}-\frac{{{x}^{2}}}{16}=1 \\
& \frac{{{y}^{2}}}{16}=1+\frac{{{x}^{2}}}{16} \\
& \frac{{{y}^{2}}}{16}=\frac{16+{{x}^{2}}}{16} \\
& y=\pm \sqrt{16+{{x}^{2}}}
\end{align}$
Substitute $x=-4$ into the equation $y=\pm \sqrt{16+{{x}^{2}}}$,
$\begin{align}
& y=\pm \sqrt{16+{{\left( -4 \right)}^{2}}} \\
& =\pm \frac{3}{4}\sqrt{16+16} \\
& =\pm \frac{3}{4}\left( 5.6568 \right) \\
& =\pm 4.24
\end{align}$
Substitute $x=0$ into the equation $y=\pm \sqrt{16+{{x}^{2}}}$,
$\begin{align}
& y=\pm \sqrt{16+{{x}^{2}}} \\
& =\pm \sqrt{16} \\
& =\pm \left( 4 \right) \\
& =\pm 4
\end{align}$
Substitute $x=4$ into the equation $y=\pm \sqrt{16+{{x}^{2}}}$,
$\begin{align}
& y=\pm \sqrt{16+{{\left( 4 \right)}^{2}}} \\
& =\pm \frac{3}{4}\sqrt{16+16} \\
& =\pm \frac{3}{4}\left( 5.6568 \right) \\
& =\pm 4.24
\end{align}$
$\begin{matrix}
x & y=\pm \sqrt{16+{{x}^{2}}} \\
-4 & \pm 5.657 \\
0 & \pm 4 \\
4 & \pm 5.657 \\
\end{matrix}$
Now plot the graph of the hyperbola as shown in Figure 2.