Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 13 - Conic Sections - 13.3 Conic Sections: Hyperbolas - 13.3 Exercise Set - Page 871: 7

Answer

The graph is shown below

Work Step by Step

$\frac{{{y}^{2}}}{16}-\frac{{{x}^{2}}}{16}=1$ Identify a and b by comparing $\frac{{{y}^{2}}}{{{4}^{2}}}-\frac{{{x}^{2}}}{{{4}^{2}}}=1$ with standard equation of hyperbola $\frac{{{y}^{2}}}{{{b}^{2}}}-\frac{{{x}^{2}}}{{{a}^{2}}}=1$ which has vertical axes. Here, $a=4$ and $b=4$ The asymptotes are, $\begin{align} & y=\frac{b}{a}x \\ & =\frac{4}{4}x \\ & =x \end{align}$ And, $\begin{align} & y=-\frac{b}{a}x \\ & =-\frac{4}{4}x \\ & =-x \end{align}$ When, $a=4$ and $b=4$ then, the possible pairs are as shown below, $\left( -4,4 \right),\left( 4,4 \right),\left( 4,-4 \right),\left( -4,-4 \right)$ These pairs form a square and both asymptotes pass through the corner points of the square. The required table to plot both asymptotes is shown below, $\begin{matrix} x & y=\frac{3}{4}x & y=-\frac{3}{4}x \\ -4 & -3 & 3 \\ 0 & 0 & 0 \\ 1 & \frac{3}{4} & -\frac{3}{4} \\ 4 & 3 & -3 \\ \end{matrix}$ Plot both the asymptotes and square as shown In figure 1 The vertices of the vertical hyperbola are the mid-points of the top and bottom sides of the rectangle thus, the vertices of the vertical hyperbola are $\left( 0,-4 \right)$ and $\left( 0,4 \right)$. Consider the hyperbola equation, $\frac{{{y}^{2}}}{16}-\frac{{{x}^{2}}}{16}=1$ Rewrite the equation as shown below, $\begin{align} & \frac{{{y}^{2}}}{16}-\frac{{{x}^{2}}}{16}=1 \\ & \frac{{{y}^{2}}}{16}=1+\frac{{{x}^{2}}}{16} \\ & \frac{{{y}^{2}}}{16}=\frac{16+{{x}^{2}}}{16} \\ & y=\pm \sqrt{16+{{x}^{2}}} \end{align}$ Substitute $x=-4$ into the equation $y=\pm \sqrt{16+{{x}^{2}}}$, $\begin{align} & y=\pm \sqrt{16+{{\left( -4 \right)}^{2}}} \\ & =\pm \frac{3}{4}\sqrt{16+16} \\ & =\pm \frac{3}{4}\left( 5.6568 \right) \\ & =\pm 4.24 \end{align}$ Substitute $x=0$ into the equation $y=\pm \sqrt{16+{{x}^{2}}}$, $\begin{align} & y=\pm \sqrt{16+{{x}^{2}}} \\ & =\pm \sqrt{16} \\ & =\pm \left( 4 \right) \\ & =\pm 4 \end{align}$ Substitute $x=4$ into the equation $y=\pm \sqrt{16+{{x}^{2}}}$, $\begin{align} & y=\pm \sqrt{16+{{\left( 4 \right)}^{2}}} \\ & =\pm \frac{3}{4}\sqrt{16+16} \\ & =\pm \frac{3}{4}\left( 5.6568 \right) \\ & =\pm 4.24 \end{align}$ $\begin{matrix} x & y=\pm \sqrt{16+{{x}^{2}}} \\ -4 & \pm 5.657 \\ 0 & \pm 4 \\ 4 & \pm 5.657 \\ \end{matrix}$ Now plot the graph of the hyperbola as shown in Figure 2.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.