Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 13 - Conic Sections - 13.3 Conic Sections: Hyperbolas - 13.3 Exercise Set - Page 871: 51

Answer

$8t\left( t-1 \right)\left( {{t}^{2}}+t+1 \right)$

Work Step by Step

$8{{t}^{4}}-8t$ Factor our 8t: $8t\left( {{t}^{3}}-1 \right)$ Rewrite the equation as a difference of cubes: $8t\left( {{t}^{3}}-1 \right)=8t\left( {{t}^{3}}-{{1}^{3}} \right)$ Apply the difference of cubes equation as shown below, $\begin{align} & 8t\left( {{t}^{3}}-1 \right)=8t\left( {{t}^{3}}-{{1}^{3}} \right) \\ & =8t\left( t-1 \right)\left( {{t}^{2}}+t+1 \right) \end{align}$ Check: $\begin{align} & 8t\left( t-1 \right)\left( {{t}^{2}}+t+1 \right)=8t\left( t\left( {{t}^{2}}+t+1 \right)-1\left( {{t}^{2}}+t+1 \right) \right) \\ & =8t\left( {{t}^{3}}+{{t}^{2}}+t-{{t}^{2}}-t-1 \right) \\ & =8t\left( {{t}^{3}}-1 \right) \\ & =8{{t}^{4}}-8t \end{align}$ Thus, the answer checks.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.