Answer
The graph is shown below
Work Step by Step
$\frac{{{x}^{2}}}{25}-\frac{{{y}^{2}}}{36}=1$
Identify a and b by comparing $\frac{{{x}^{2}}}{{{5}^{2}}}-\frac{{{y}^{2}}}{{{6}^{2}}}=1$ with the standard equation $\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{b}^{2}}}=1$ which has horizontal axes.
Here,
$a=5$ and $b=6$
The asymptotes are,
$\begin{align}
& y=\frac{b}{a}x \\
& =\frac{6}{5}x
\end{align}$
And,
$\begin{align}
& y=-\frac{b}{a}x \\
& =-\frac{6}{5}x
\end{align}$
$\left( -5,6 \right),\left( 5,6 \right),\left( 5,-6 \right),\left( -5,-6 \right)$
These pairs form a rectangle and both asymptotes pass through the corner points of the rectangle.
The required table to plot both asymptotes is shown below,
$\begin{matrix}
x & y=\frac{6}{5}x & y=-\frac{6}{5}x \\
-5 & -6 & 6 \\
0 & 0 & 0 \\
5 & 6 & -6 \\
\end{matrix}$
Plot the asymptotes and rectangle as shown below in Figure - 1.
The vertices of the horizontal hyperbola are the mid-points of the left and right sides of the rectangle; thus, the vertices of the horizontal hyperbola are $\left( -5,0 \right)$ and $\left( 5,0 \right)$.
Consider the hyperbola equation,
$\frac{{{x}^{2}}}{25}-\frac{{{y}^{2}}}{36}=1$
Rewrite the equation as shown below,
$\begin{align}
& \frac{{{x}^{2}}}{25}-\frac{{{y}^{2}}}{36}=1 \\
& \frac{{{y}^{2}}}{36}=\frac{{{x}^{2}}}{25}-1 \\
& \frac{{{y}^{2}}}{36}=\frac{{{x}^{2}}-25}{25} \\
& y=\pm \frac{6}{5}\sqrt{{{x}^{2}}-25}
\end{align}$
Substitute $x=-10$ into the equation $y=\pm \frac{6}{5}\sqrt{{{x}^{2}}-25}$,
$\begin{align}
& y=\pm \frac{6}{5}\sqrt{{{\left( -10 \right)}^{2}}-25} \\
& =\pm \frac{6}{5}\sqrt{100-25} \\
& =\pm \frac{6}{5}\left( 8.66 \right) \\
& =\pm 10.392
\end{align}$
Substitute $x=-5$ into the equation $y=\pm \frac{6}{5}\sqrt{{{x}^{2}}-25}$,
$\begin{align}
& y=\pm \frac{6}{5}\sqrt{{{\left( -5 \right)}^{2}}-25} \\
& =\pm \frac{6}{5}\sqrt{25-25} \\
& =\pm \frac{6}{5}\left( 0 \right) \\
& =0
\end{align}$
Substitute $x=5$ into the equation $y=\pm \frac{2}{5}\sqrt{{{x}^{2}}-25}$,
$\begin{align}
& y=\pm \frac{6}{5}\sqrt{{{\left( 5 \right)}^{2}}-25} \\
& =\pm \frac{6}{5}\sqrt{25-25} \\
& =\pm \frac{6}{5}\left( 0 \right) \\
& =0
\end{align}$
Substitute $x=10$ into the equation $y=\pm \frac{2}{5}\sqrt{{{x}^{2}}-25}$,
$\begin{align}
& y=\pm \frac{6}{5}\sqrt{{{\left( 10 \right)}^{2}}-25} \\
& =\pm \frac{6}{5}\sqrt{100-25} \\
& =\pm \frac{6}{5}\left( 8.66 \right) \\
& =\pm 10.392
\end{align}$
The required table is:
$\begin{matrix}
x & y=\pm \frac{2}{5}\sqrt{{{x}^{2}}-25} \\
-10 & \pm 10.392 \\
-5 & 0 \\
5 & 0 \\
10 & \pm 10.392 \\
\end{matrix}$
Now plot the hyperbola.