Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 13 - Conic Sections - 13.3 Conic Sections: Hyperbolas - 13.3 Exercise Set - Page 871: 48

Answer

${{\left( 3xy-5 \right)}^{2}}$

Work Step by Step

$9{{x}^{2}}{{y}^{2}}-30xy+25$ Rewrite the equation as shown below, $9{{x}^{2}}{{y}^{2}}-30xy+25={{\left( 3xy \right)}^{2}}-2\cdot \left( 3xy \right)\cdot \left( 5 \right)+{{\left( 5 \right)}^{2}}$ The sign of the middle term is negative, so: ${{A}^{2}}-2AB+{{B}^{2}}={{\left( A-B \right)}^{2}}$ $\begin{align} & 9{{x}^{2}}{{y}^{2}}-30xy+25={{\left( 3xy \right)}^{2}}-2\cdot \left( 3xy \right)\cdot \left( 5 \right)+{{\left( 5 \right)}^{2}} \\ & ={{\left( 3xy-5 \right)}^{2}} \end{align}$ Check: Multiply the factors and simplify using the distributive law as shown below: $\begin{align} & {{\left( 3xy-5 \right)}^{2}}=\left( 3xy-5 \right)\left( 3xy-5 \right) \\ & =3xy\left( 3xy-5 \right)-5\left( 3xy-5 \right) \\ & ={{\left( 3xy \right)}^{2}}-15xy-15xy+{{\left( 5 \right)}^{2}} \\ & =9{{x}^{2}}{{y}^{2}}-30xy+25 \end{align}$ Therefore, the factors of the polynomial $9{{x}^{2}}{{y}^{2}}-30xy+25$ are ${{\left( 3xy-5 \right)}^{2}}$ .
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.