Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.2 Matrix Algebra - Problems - Page 136: 28

Answer

See below

Work Step by Step

a) We form $S=\begin{bmatrix} s_1,s_2,s_3 \end{bmatrix}=\begin{bmatrix} -x & -y &-z \\0& y & 2z\\x & -y &z \end{bmatrix}$ then $AS=\begin{bmatrix} 2 & 2 & 1\\2&5&2\\1&2&2 \end{bmatrix}\begin{bmatrix} -x & -y &-z \\0& y & 2z\\x & -y &z \end{bmatrix}=\begin{bmatrix} -x & -y &7z \\0& y & 14z\\x & -y & 7z \end{bmatrix}$ b) Obtain $S^TAS\\=S^T(AS)\\=\begin{bmatrix} -x &0 &x\\-y&y &-y\\z & 2z& z \end{bmatrix}(\begin{bmatrix} 2 &2&1\\2 & 5 &2\\1 &2&2 \end{bmatrix}\begin{bmatrix} -x & -y & z\\0 &y &2z \\x&-y &z \end{bmatrix})\\ =\begin{bmatrix} -x &0 &x\\-y&y &-y\\z & 2z& z \end{bmatrix}\begin{bmatrix} -x & -y &7z\\0&y&14z\\x&-y&7z \end{bmatrix}\\=\begin{bmatrix} 2x^2 &0 & 0\\0 & 3y^2&0 \\ 0& 0 &42z^2 \end{bmatrix}$ Since $S^TAS=diag(1,1,7)=\begin{bmatrix} 1 &0 & 0\\0 &1 & 0\\0& 0&7 \end{bmatrix}$ we have: $2x^2=1 \rightarrow x=\pm \frac{1}{\sqrt 2}\\ 3y^2=1 \rightarrow x=\pm \frac{1}{\sqrt 3}\\ 42z^2=7 \rightarrow x=\pm \frac{1}{\sqrt 6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.