Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.2 Matrix Algebra - Problems - Page 136: 20

Answer

See below

Work Step by Step

$\begin{bmatrix} A_1,A_2 \end{bmatrix}=A_1A_2-A_2A_1=\frac{1}{2}\begin{bmatrix} 0 & i\\i &0 \end{bmatrix}\frac{1}{2}\begin{bmatrix} 0 &-1\\1 &0 \end{bmatrix}-\frac{1}{2}\begin{bmatrix} 0 &-1\\1 &0 \end{bmatrix}\frac{1}{2}\begin{bmatrix} 0 &i\\i &0 \end{bmatrix}=\frac{1}{4}\begin{bmatrix} i&0\\0 & -i \end{bmatrix}-\frac{1}{4}\begin{bmatrix} -i &0\\0 &i \end{bmatrix}=\frac{1}{4}\begin{bmatrix} 2i &0\\0 &-2i \end{bmatrix}=\frac{1}{2}\begin{bmatrix} i &0\\0 &-i \end{bmatrix}=A_3$ $\begin{bmatrix} A_2,A_3 \end{bmatrix}=A_2A_3-A_3A_2=\frac{1}{2}\begin{bmatrix} 0 & -1\\1 &0 \end{bmatrix}\frac{1}{2}\begin{bmatrix} i&0\\0& -i \end{bmatrix}-\frac{1}{2}\begin{bmatrix} i &0\\0 &-i \end{bmatrix}\frac{1}{2}\begin{bmatrix} 0 & -1\\1 &0 \end{bmatrix}=\frac{1}{4}\begin{bmatrix} 0&i\\i & 0 \end{bmatrix}-\frac{1}{4}\begin{bmatrix} -i &0\\0 &i \end{bmatrix}=\frac{1}{4}\begin{bmatrix} i &0\\0 &-i \end{bmatrix}=A_1$ $\begin{bmatrix} A_3,A_1 \end{bmatrix}=A_3A_1-A_1A_3=\frac{1}{2}\begin{bmatrix} i&0\\0&-i\end{bmatrix}\frac{1}{2}\begin{bmatrix} 0& i\\ i&0 \end{bmatrix}-\frac{1}{2}\begin{bmatrix} 0 &i\\i &0 \end{bmatrix}\frac{1}{2}\begin{bmatrix} i & 0\\ 0 &-i \end{bmatrix}=\frac{1}{4}\begin{bmatrix} 0&-1\\-1 & 0 \end{bmatrix}-\frac{1}{4}\begin{bmatrix} 0&1\\1 & 0 \end{bmatrix}=\frac{1}{4}\begin{bmatrix} 0& -2\\2 & 0 \end{bmatrix}=\frac{1}{2}\begin{bmatrix} 0&-1\\1 & 0 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.