Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.2 Matrix Algebra - Problems - Page 136: 15

Answer

$A=\begin{bmatrix} 1 & \frac{1}{2} & \frac{-1}{8}\\ 0 & 1 & \frac{1}{2}\\ 0 & 0 & 1 \end{bmatrix}$

Work Step by Step

Given: $A=\begin{bmatrix} 1 & x & z\\ 0 &1 & y\\ 0 & 0 & 1 \end{bmatrix}$ $A^2=A.A=\begin{bmatrix} 1 & x & z\\ 0 &1 & y\\ 0 & 0 & 1 \end{bmatrix}.\begin{bmatrix} 1 & x & z\\ 0 &1 & y\\ 0 & 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & x+x & z+xy+z\\ 0 &1 & 2y\\ 0 & 0 & 1 \end{bmatrix}$ Hence $A^2+\begin{bmatrix} 0 & -1 & 0\\ 0 &0 & -1\\ 0 & 0 & 0 \end{bmatrix}=I_3$ $\rightarrow \begin{bmatrix} 1 & x+x & z+xy+z\\ 0 &1 & 2y\\ 0 & 0 & 1 \end{bmatrix}+\begin{bmatrix} 0 & -1 & 0\\ 0 &0 & -1\\ 0 & 0 & 0 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0\\ 0 &1 & 0\\ 0 & 0 & 1 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 2x-1 & xy+2z\\ 0 & 1 & 2y-1\\ 0 & 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0\\ 0 &1 & 0\\ 0 & 0 & 1 \end{bmatrix}$ $2x-1=0 \rightarrow x=\frac{1}{2}$ or $2y-1=0 \rightarrow y=\frac{1}{2}$ or $2z+xy=0 \rightarrow 2z+(\frac{1}{2})(\frac{1}{2}) =0 \rightarrow z=-\frac{1}{8}$ Hence here, $A=\begin{bmatrix} 1 & \frac{1}{2} & \frac{-1}{8}\\ 0 & 1 & \frac{1}{2}\\ 0 & 0 & 1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.