Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.2 Matrix Algebra - Problems - Page 137: 29

Answer

See below

Work Step by Step

a) We form $S=\begin{bmatrix} s_1,s_2,s_3 \end{bmatrix}=\begin{bmatrix} 0 & 2x& y \\0& x & -2y\\z & 0 & 0 \end{bmatrix}$ then $AS=\begin{bmatrix} 1 & -4 & 0\\ -4& 7&0\\0 & 0& 5 \end{bmatrix}\begin{bmatrix} 0 & 2x& y \\0& x & -2y\\z & 0 & 0 \end{bmatrix}=\begin{bmatrix} 0 & -2x & 9y \\0 & -x & -18y \\ 5z & 0 & 0 \end{bmatrix}=\begin{bmatrix} 5s_1,-s_2,9s_3 \end{bmatrix}$ b) Obtain $S^TAS\\=S^T(AS)\\=\begin{bmatrix} 0 &0&z\\2x & x& 0\\y & -2y & 0 \end{bmatrix}(\begin{bmatrix} 1 & 4 & 0\\-4 & 7 &0\\0 &0 &5 \end{bmatrix}\begin{bmatrix} 0 &2x&y\\0 &x&-2y\\ z&0&0 \end{bmatrix})\\ =\begin{bmatrix} 0 &0&z\\2x & x& 0\\y & -2y & 0 \end{bmatrix}\begin{bmatrix} 0 & -2x & 9y\\0& -x & -18y\\ 5z& 0& 0 \end{bmatrix}\\=\begin{bmatrix} 5z^2 &0 & 0\\0 & -5x^2&0 \\ 0& 0 &45y^2 \end{bmatrix}$ Since $S^TAS=diag(5,-1,9)=\begin{bmatrix} 5 &0 & 0\\0 & -1 & 0\\0& 0&9 \end{bmatrix}$ we have: $5z^2=5 \rightarrow z=\pm 1\\ -5x^2=-1 \rightarrow x=\pm \frac{1}{\sqrt 5}\\ 45y^2=9 \rightarrow y=\pm \frac{1}{\sqrt 5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.