Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.2 Matrix Algebra - Problems - Page 136: 27

Answer

See below

Work Step by Step

a) We know $A$ is a $1\times 3$ dimension. $D$ is a $3\times 3$ dimension, then $B^T$ will be $3 \times 3$ dimension. Hence, $AD^T$ is a defined expression. $AD^T=\begin{bmatrix} -3 &-1 &6 \end{bmatrix}\begin{bmatrix} -2 &0 &1\\1 &0 &-2 \\ 5&7&-1 \end{bmatrix}=\begin{bmatrix} 35 & 42& -7 \end{bmatrix}$ b) $C$ is a $2\times 4$ dimension, then $C^T$ will be $4 \times 2$ dimension. Hence, $C^TB^T$ is defined expression. $C^TC=\begin{bmatrix} -9 &1 \\0 & 1 \\3 &5\\-2 & -2 \end{bmatrix}\begin{bmatrix} -9 & 0& 3 &-2\\1 & 1 & 5 &-2 \end{bmatrix}=\begin{bmatrix} 82 & 1&-22 & 16\\1 & 1 & 5 & -2\\-22 & 5 &34 &-16\\16 &-2&-16 &8 \end{bmatrix}\\ \rightarrow (C^TC)^2=\begin{bmatrix} 82 & 1&-22 & 16\\1 & 1 & 5 & -2\\-22 & 5 &34 &-16\\16 &-2&-16 &8 \end{bmatrix}\begin{bmatrix} 82 & 1&-22 & 16\\1 & 1 & 5 & -2\\-22 & 5 &34 &-16\\16 &-2&-16 &8 \end{bmatrix}=\begin{bmatrix} 7241 & -59 & -2803 & 1790\\-59 & 31 & 185 &-82\\-2803 & 185& 1921 & -1034 \\1790 &-82 &-1034 & 580 \end{bmatrix}$ c) We have $D$ is a $3\times 3$ dimension, $D^T$ will be $3 \times 3$ dimension. Since $B$ is $3\times 2$ dimension, hence $D^TB$ is a defined expression. $D^TB=\begin{bmatrix} -2 & 0 & 1\\1 &0&-2\\5&7&-1 \end{bmatrix}\begin{bmatrix} 0 & -4\\-7 &1\\-1 & -3 \end{bmatrix}=\begin{bmatrix} -1 & 5\\2 & 2 \\-48 & -10 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.