Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 4 Quadratic Functions and Factoring - 4.8 Use the Quadratic Formula and the Discriminant - 4.8 Exercises - Skill Practice - Page 296: 10

Answer

The solutions are $\displaystyle \frac{-2+\sqrt{62}i}{6}$ and $\displaystyle \frac{-2-\sqrt{62}i}{6}$.

Work Step by Step

$ 6u^{2}+4u+11=0\qquad$ ...use the Quadratic formula: $x=\displaystyle \frac{-b\pm\sqrt{b^{2}-4ac}}{2a}$ $a=6,b=4,c=11$ $ u=\displaystyle \frac{-4\pm\sqrt{16-264}}{12}\qquad$...simplify $ u=\displaystyle \frac{-4\pm\sqrt{-248}}{12}\qquad$...rewrite using the imaginary unit $i$ $ u=\displaystyle \frac{-4\pm 2\sqrt{62}i}{12}\qquad$...divide the expression with $2$. $u=\displaystyle \frac{-2\pm\sqrt{62}i}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.