Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 8 - Potential Energy and Conservation of Energy - Problems - Page 212: 122a

Answer

During the final $d=12 \mathrm{m}$ of motion, $W=0$ and we use $$ K_{1}+U_{1} =K_{2}+U_{2}+f_{k} d $$ $$\frac{1}{2} m v^{2}+0 =0+0+f_{k} d $$ $$\text { where } m=0.42 \mathrm{kg} \text { and } v=4.2 \mathrm{m} / \mathrm{s} \text { gives } f_{k}=0.31 \mathrm{N} .$$ $$ \text { Therefore, the thermal energy change is} $$ $$ \Delta E_{\text {th }}=f_{k} d=3.7 \mathrm{J} $$

Work Step by Step

During the final $d=12 \mathrm{m}$ of motion, $W=0$ and we use $$ K_{1}+U_{1} =K_{2}+U_{2}+f_{k} d $$ $$\frac{1}{2} m v^{2}+0 =0+0+f_{k} d $$ $$\text { where } m=0.42 \mathrm{kg} \text { and } v=4.2 \mathrm{m} / \mathrm{s} \text { gives } f_{k}=0.31 \mathrm{N} .$$ $$ \text { Therefore, the thermal energy change is} $$ $$ \Delta E_{\text {th }}=f_{k} d=3.7 \mathrm{J} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.