Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 8 - Potential Energy and Conservation of Energy - Problems - Page 212: 121d

Answer

The distance $d$ the train moved is given by $$ d=\int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime}$$$$=\int_{0}^{360}\left(100+\frac{3}{2} t\right)^{1 / 2} d t$$$$=\left.\frac{4}{9}\left(100+\frac{3}{2} t\right)^{3 / 2}\right|_{0} ^{360}$$$$=6.7 \times 10^{3} \mathrm{m} . $$

Work Step by Step

The distance $d$ the train moved is given by $$ d=\int_{0}^{t} v\left(t^{\prime}\right) d t^{\prime}$$$$=\int_{0}^{360}\left(100+\frac{3}{2} t\right)^{1 / 2} d t$$$$=\left.\frac{4}{9}\left(100+\frac{3}{2} t\right)^{3 / 2}\right|_{0} ^{360}$$$$=6.7 \times 10^{3} \mathrm{m} . $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.