Answer
$ \Delta E_{\mathrm{ben}}= 7.56 \mathrm{MeV}$
Work Step by Step
The mass difference is atomic mass is
$$\Delta m=(94)(1.00783 \mathrm{u})+(239-94)(1.00867 \mathrm{u})-(239.05216 \mathrm{u})=1.94101 \mathrm{u}$$
1 u = 931.5 MeV. Hence, the binding energy is
$$\Delta E_{\mathrm{be}}=(1.94101 \mathrm{u})(931.5 \mathrm{MeV} / \mathrm{u})=1808 \mathrm{MeV}$$
For 239 nucleons, the binding energy per nucleon is
$$\Delta E_{\mathrm{ben}}=E / A=(1808 \mathrm{MeV}) / 239=\boxed{7.56 \mathrm{MeV}}$$