Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 42 - Nuclear Physics - Problems - Page 1303: 21

Answer

(a) $\Delta E_{\mathrm{be}}= Z \Delta_{h}+N \Delta_{n}-\Delta$ (b) $\Delta E_{\text {be }} = 7.92 \mathrm{MeV}$

Work Step by Step

(a) If the masses are given in atomic mass units, then mass excesses are defined by $\Delta_{H}=\left(m_{H}-1\right) c^{2}, \Delta_{n}=\left(m_{n}-1\right) c^{2},$ and $\Delta=(M-A) c^{2} .$ This means $$m_{H} c^{2}=\Delta_{H}+c^{2}, m_{n} c^{2}=\Delta_{n}+c^{2},$$ and $$M c^{2}=\Delta+A c^{2} .$$ Thus, $$ \Delta E_{\mathrm{be}}=\left(Z \Delta_{H}+N \Delta_{n}-\Delta\right)+(Z+N-A) c^{2}=\boxed{Z \Delta_{h}+N \Delta_{n}-\Delta} $$ Where $A = Z+N$ (b) For ${ }_{79}^{197} \mathrm{Au}, Z=79$ and $N=197-79=118 .$ Hence, $$ \Delta E_{\mathrm{be}}=(79)(7.29 \mathrm{MeV})+(118)(8.07 \mathrm{MeV})-(-31.2 \mathrm{MeV})=1560 \mathrm{MeV} $$ This means the binding energy per nucleon is $$\Delta E_{\text {be }}=(1560 \mathrm{MeV}) / 197=\boxed{7.92 \mathrm{MeV}}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.