Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1184: 68b

Answer

$39.23\;keV$

Work Step by Step

Let $E$ is the energy of the incident photon, $E^\prime$ is the energy of the scattered photon, and $K$ is the kinetic energy of the recoiling electron, which is imparted to the electron by photon According to conservation of energy, $E=E^\prime+K$ or, $K=E-E^\prime$ ...................$(1)$ According to quantum theory of light, $E=hf=\frac{ch}{\lambda}$ and $E^\prime=hf^\prime=\frac{ch}{\lambda^\prime}$ where the symbols have their usual meanings. Now, we need to find the fractional energy loss for photons that scatter from the electrons: $\text{frac}=\frac{\text{energy loss}}{\text{initial energy}}=\frac{E-E^\prime}{E}=\frac{K}{E}$ $\frac{K}{E}=\frac{\frac{ch}{\lambda}-\frac{ch}{\lambda^\prime}}{\frac{ch}{\lambda}}$ or, $\frac{K}{E}=\frac{\frac{1}{\lambda}-\frac{1}{\lambda^\prime}}{\frac{1}{\lambda}}$ or, $\frac{K}{E}=\frac{\lambda^\prime-\lambda}{\lambda^\prime}$ or, $\frac{K}{E}=\frac{\Delta\lambda}{\lambda+\Delta\lambda}$ where, $\Delta\lambda=\lambda^\prime-\lambda=\frac{h}{mc}(1-\cos\phi)$ is called the Compton wavelength. $\phi$ is the angle at which it is scattered from its initial direction of motion. $\therefore \frac{K}{E}=\frac{\frac{h}{mc}(1-\cos\phi)}{\lambda+\frac{h}{mc}(1-\cos\phi)}$ or, $K=\frac{E(1-\cos\phi)}{\frac{\lambda mc}{h}+(1-\cos\phi)}$ For head-on collision, $\phi=180^{\circ}$, hence $K=\frac{2E}{\frac{\lambda mc}{h}+2}$ or, $K=\frac{E}{\frac{\lambda mc}{2h}+1}$ Substitute the given values, or, $K=\frac{E}{\frac{\lambda mc}{2h}+1}$ or, $K=\frac{1.2\times 10^{5}\;eV}{\frac{10\times 10^{-12}\times 9.1\times 10^{-31}\times 3\times 10^{8}}{2\times6.63\times 10^{-34}}+1}$ or, $K=3.923\times 10^{4}\;eV=39.23\;keV$ $\therefore$ The photon imparts $39.23\;keV$ energy to an electron in a head-on collision.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.