Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1184: 55a

Answer

$14.87$ $keV$

Work Step by Step

The de Broglie wavelength $(\lambda)$ is express by the formula, $\lambda=\frac{h}{p}$ where $h$ is the planck's constant and $p$ is the momentum of the moving particle $\therefore$ $p=\frac{h}{\lambda}$ ......................$(1)$ The de Broglie wavelength of the electron is given: $\lambda=10$ $pm$. For shorter de Broglie wavelength, we have to consider relativistic approach to find the kinetic energy ($K$) of an electron Total energy ($E$) of an electron is expressed as $E=\sqrt {p^2c^2+m^2c^4}$ and rest mass energy of and electron is given by $E_0=mc^2$ Now, the kinetic energy $K$ of the electron is given by $K=E-E_0$ or, $K=\sqrt {p^2c^2+m^2c^4}-mc^2$ Substituting eq. $1$ in the above relation, we get $K=\sqrt {\frac{h^2c^2}{\lambda^2}+m^2c^4}-mc^2$ Substituting $\lambda=1.00$ $fm$, we get $K=\sqrt {\frac{(6.63\times 10^{-34}\times 3\times 10^{8})^2}{(10\times 10^{-12})^2}+(9.1\times 10^{-31})^2\times(3\times 10^{8})^4}-9.1\times 10^{-31}\times(3\times 10^{8})^2 J$ $K\approx 2.38\times 10^{-15}$ $J$ or, $K=\frac{2.38\times 10^{-15}}{1.6\times 10^{-19}}$ $eV$ or, $K\approx 1.487\times 10^{4}$ $eV$ or, $K=14.87$ $keV$ $\therefore$ The required minimum electron energy is $14.87$ $keV$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.