Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1184: 63b

Answer

The time-dependent wave function $\Psi(x, t)$ is given by $\Psi(x, t)=\psi(x)e^{-i\omega t}$ Substituting, $\psi(x)=Ae^{ikx}$, we get $\Psi(x, t)=Ae^{ikx}e^{-i\omega t}$ or, $\Psi(x, t)=Ae^{i(kx-\omega t)}$ where $A$ is a constant Using Euler's equation, we get $\Psi(x,t)=A\{\cos (kx-\omega t)+i\sin (kx-\omega t)\}$ or, $\Psi (x,t)=a+ib$ where, $a=A\cos (kx-\omega t)$, and $b=A\sin (kx-\omega t)$ are real quantities.

Work Step by Step

The time-dependent wave function $\Psi(x, t)$ is given by $\Psi(x, t)=\psi(x)e^{-i\omega t}$ Substituting, $\psi(x)=Ae^{ikx}$, we get $\Psi(x, t)=Ae^{ikx}e^{-i\omega t}$ or, $\Psi(x, t)=Ae^{i(kx-\omega t)}$ where $A$ is a constant Using Euler's equation, we get $\Psi(x,t)=A\{\cos (kx-\omega t)+i\sin (kx-\omega t)\}$ or, $\Psi (x,t)=a+ib$ where, $a=A\cos (kx-\omega t)$, and $b=A\sin (kx-\omega t)$ are real quantities.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.