Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1184: 65b

Answer

$\vert nm \vert = \vert n \vert~\vert m \vert$

Work Step by Step

$n = a + ib$ $m = c + id$ We can find an expression for $\vert nm \vert$: $\vert nm \vert = \vert (a + ib)(c + id) \vert$ $\vert nm \vert = \vert (ac-bd) + i(bc + ad) \vert$ $\vert nm \vert = \sqrt{(ac-bd)^2 + (bc + ad)^2}$ $\vert nm \vert = \sqrt{(ac)^2-2abcd+ (bd)^2 + (bc)^2 + 2abcd+(ad)^2}$ $\vert nm \vert = \sqrt{(ac)^2+ (bd)^2 + (bc)^2+(ad)^2}$ $\vert nm \vert = \sqrt{(a^2+ b^2)(c^2+ d^2)}$ $\vert nm \vert = \sqrt{(a^2+ b^2)}~\sqrt{(c^2+ d^2)}$ $\vert nm \vert = \vert n \vert~\vert m \vert$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.