Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.2 Verifying Trigonometric Identities - 5.2 Exercises - Page 208: 7

Answer

$\sin(-\theta)=-\sin\theta$

Work Step by Step

Reference to the right angled triangle $ \triangle OAL \equiv \triangle OBL$ $OA=OB$ $AL=-BL$ In the right triangle $\triangle OAL$ $\sin \theta=\frac{AL}{OA} \quad\quad\quad$ eq (1) In the right triangle $\triangle OBL$ $\sin(-\theta)=\frac{BL}{OB}$ Using the property of equivalency of triangle $OA=OB$ $AL=-BL$ or $-AL=BL$ $\sin(-\theta)=\frac{BL}{OB}=\frac{-AL}{OB}=-\frac{AL}{OB} \quad\quad\quad$ eq (2) From equation (1) and equation (2) $\sin(-\theta)=-\sin\theta$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.