Answer
$$(1+\tan\theta)^2-2\tan\theta=\sec^2\theta$$
Work Step by Step
$$A=(1+\tan\theta)^2-2\tan\theta$$
$$A=(1+\tan^2\theta+2\tan\theta)-2\tan\theta$$
$$A=1+\tan^2\theta+2\tan\theta-2\tan\theta$$
$$A=1+\tan^2\theta$$
We know from a Pythagorean Identity that $$1+\tan^2\theta=\sec^2\theta$$ That means $$A=\sec^2\theta$$