Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.2 Verifying Trigonometric Identities - 5.2 Exercises - Page 208: 20

Answer

$$(1+\tan\theta)^2-2\tan\theta=\sec^2\theta$$

Work Step by Step

$$A=(1+\tan\theta)^2-2\tan\theta$$ $$A=(1+\tan^2\theta+2\tan\theta)-2\tan\theta$$ $$A=1+\tan^2\theta+2\tan\theta-2\tan\theta$$ $$A=1+\tan^2\theta$$ We know from a Pythagorean Identity that $$1+\tan^2\theta=\sec^2\theta$$ That means $$A=\sec^2\theta$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.