Answer
$$(\sin\alpha-\cos\alpha)^2=1-2\sin\alpha\cos\alpha$$
Work Step by Step
$$A=(\sin\alpha-\cos\alpha)^2$$
$$A=\sin^2\alpha-2\sin\alpha\cos\alpha+\cos^2\alpha$$
$$A=(\sin^2\alpha+\cos^2\alpha)-2\sin\alpha\cos\alpha$$
- According to Pythagorean Identity: $$\sin^2\alpha+\cos^2\alpha=1$$
Therefore, $$A=1-2\sin\alpha\cos\alpha$$