Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.2 Verifying Trigonometric Identities - 5.2 Exercises - Page 208: 38

Answer

$$\frac{\csc\theta\sec\theta}{\cot\theta}=\sec^2\theta$$

Work Step by Step

$$A=\frac{\csc\theta\sec\theta}{\cot\theta}$$ $$A=(\csc\theta\sec\theta)\times(\frac{1}{\cot\theta})$$ - Reciprocal Identities: $$\csc\theta=\frac{1}{\sin\theta}\hspace{1cm}\sec\theta=\frac{1}{\cos\theta}$$ So, $$\csc\theta\sec\theta=\frac{1}{\sin\theta}\frac{1}{\cos\theta}=\frac{1}{\sin\theta\cos\theta}\hspace{1cm}(1)$$ - Another reciprocal identity: $$\cot\theta=\frac{1}{\tan\theta}$$ which means $$\tan\theta=\frac{1}{\cot\theta}$$ Yet, according to a Quotient Identity: $$\tan\theta=\frac{\sin\theta}{\cos\theta}$$ Therefore, $$\frac{\sin\theta}{\cos\theta}=\frac{1}{\cot\theta}\hspace{1cm}(2)$$ Combine $(1)$ and $(2)$ back into $A$, we have $$A=\frac{1}{\sin\theta\cos\theta}\times\frac{\sin\theta}{\cos\theta}$$ $$A=\frac{1}{\cos^2\theta}$$ $$A=\sec^2\theta\hspace{1.5cm}\text{(Reciprocal Identity)}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.