Answer
$\tan^{2}\theta+1=\sec^{2}\theta$
Work Step by Step
Since
$\sin^2\theta+\cos^2\theta=1$
Dividing by $\cos^2\theta$
$\frac{ \sin^2\theta+\cos^2\theta } {\cos^2\theta}=\frac{1}{ \cos^2 \theta}$
$\frac{\sin^2\theta}{\cos^2\theta}+\frac{\cos^2\theta}{\cos^2 \theta}=\sec^2\theta$
$\tan^2\theta+1=\sec^2\theta$