Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.2 Verifying Trigonometric Identities - 5.2 Exercises - Page 208: 6

Answer

$\tan^{2}\theta+1=\sec^{2}\theta$

Work Step by Step

Since $\sin^2\theta+\cos^2\theta=1$ Dividing by $\cos^2\theta$ $\frac{ \sin^2\theta+\cos^2\theta } {\cos^2\theta}=\frac{1}{ \cos^2 \theta}$ $\frac{\sin^2\theta}{\cos^2\theta}+\frac{\cos^2\theta}{\cos^2 \theta}=\sec^2\theta$ $\tan^2\theta+1=\sec^2\theta$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.