Answer
$$(\sin x+1)^2-(\sin x-1)^2=4\sin x$$
Work Step by Step
$$A=(\sin x+1)^2-(\sin x-1)^2$$
We can use the identity: $$a^2-b^2=(a-b)(a+b)$$
That means
$$A=[(\sin x+1)-(\sin x-1)][(\sin x+1)+(\sin x-1)]$$
$$A=[(\sin x-\sin x)+(1-(-1))][(\sin x+\sin x)+(1-1)]$$
$$A=[0+2][2\sin x+0]$$
$$A=2\times2\sin x$$
$$A=4\sin x$$