Answer
$$4\tan^2\beta+\tan\beta-3=(\tan\beta+1)(4\tan\beta-3)$$
Work Step by Step
$$A=4\tan^2\beta+\tan\beta-3$$
We can rewrite $\tan\beta$ into $(4\tan\beta-3\tan\beta)$. In detail,
$$A=4\tan^2\beta+4\tan\beta-3\tan\beta-3$$
$$A=(4\tan^2\beta+4\tan\beta)+(-3\tan\beta-3)$$
$$A=4\tan\beta(\tan\beta+1)-3(\tan\beta+1)$$
$$A=(\tan\beta+1)(4\tan\beta-3)$$