Answer
$$(1+\sin t)^2+\cos^2t=2\sin t+2$$
Work Step by Step
$$A=(1+\sin t)^2+\cos^2t$$
$$A=(1+\sin^2t+2\sin t)+\cos^2 t$$
$$A=1+(\sin^2 t+\cos^2 t)+2\sin t$$
Following one Pythagorean Identity: $$\sin^2 t+\cos^2 t=1$$
we have $$A=1+1+2\sin t$$
$$A=2\sin t+2$$