Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 6 - Analytic Trigonometry - Section 6.4 Trigonometric Identities - 6.4 Assess Your Understanding - Page 497: 32

Answer

The left hand side is equivalent to $1$ therefore the given equation is an identity. Refer to the solution below.

Work Step by Step

$\text{ LHS } = (1-\cos^2{\theta})(1+\cot^2{\theta})$ $\text{By Expanding:}$ \begin{align} \text{ LHS } &= 1- \cos^2{\theta}-\cos^2{\theta} \cot^2{\theta} + \cot^2{\theta} \\[3mm] &= \sin^2{\theta}-\cos^2{\theta} \dfrac{\cos^2{\theta}}{\sin^2{\theta}}+ \dfrac{\cos^2{\theta}}{\sin^2{\theta}} \\[3mm] &= \sin^2{\theta} - \dfrac{\cos^4{\theta}}{\sin^2{\theta}}+\dfrac{\cos^2{\theta}}{\sin^2{\theta}} \\[3mm] &= \sin^2{\theta} +\dfrac{\cos^2{\theta}-\cos^4{\theta}}{\sin^2{\theta}} \\[3mm] &= \sin^2{\theta}+\dfrac{\cos^2{\theta}(1-\cos^2{\theta})}{\sin^2{\theta}} \\[3mm] &= \sin^2{\theta}+\dfrac{\cos^2{\theta} \sin^2{\theta}}{\sin^2{\theta}} \\[3mm] &= \sin^2{\theta}+\cos^2{\theta} \\[3mm] &= 1 \\[3mm] &= \text{ RHS} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.